

Dr. Leopoldo Izquieta Pérez

Curso internacional de capacitación continua en geomática

Aplicaciones integradas de SIG utilizando TerrSet

Quito, 3-7 octubre 2016

El Instituto Nacional de Investigación en Salud Pública INSPI "Dr. Leopoldo Izquieta Pérez", a través de su Plataforma integrada de epidemiología, geomática, bioinformática y bioestadística EpiSIG, invita al:

CURSO DE CAPACITACIÓN CONTINUA EN GEOMÁTICA "APLICACIONES INTEGRADAS DE SIG UTILIZANDO TERRSET"

3-7 octubre 2016 / 8h00 - 17h30 / Quito, Ecuador

Cupo limitado a 45 personas

Se hará una previa selección basada en la formación o empleo actual y motivación de los candidatos.

Taller sin costo

Para más información ingresa a: http://www.investigacionsalud.gob.ec/webs/episig/taller/#taller3

Horario	Lunes Martes Mié		Miércoles	Jueves	Viernes
8h-13h (Receso de 10h30 a 10h50)	Inauguración Introducción al uso de TerrSet	Modelación de cambio climático	Procesamiento de datos censales socio-económicos (parte 2)	Medidas epidemiológicas en SIG (parte 1)	Evaluación multi- criterios de riesgo
13h-14h	Almuerzo	Almuerzo	Almuerzo	Almuerzo	Almuerzo
14h-17h (Receso de 15h30 a 15h45)	Procesamiento de imágenes satelitales de clima	Modelación del ciclo hídrico	Procesamiento de datos censales socio-económicos (parte 2)	Medidas epidemiológicas en SIG (parte 2)	Simulación de escenarios Clausura
				Cena	

Objetivos del curso :

- <u>directo</u> compartir los avances en aplicaciones avanzadas integradas de geomática
- <u>indirecto</u> dar a conocer el nuevo Centro de Recursos TerrSet (Convenio INSPI-Clark Labs) y establecer colaboraciones nacionales y regionales (América Latina)

Brasil

Paraguay

ruguay

Bolivia

Argentina

Chile

- Institución y área de trabajo
- Expectativas

- Puede ser necesario desactivar el antivirus y el cortafuegos (*FireWall*)
- En la Configuración Regional (del Panel de Control), utilizar el **punto** como símbolo decimal

<i>,</i>		Region		~	
()	Person	alizar formato			
Números Mone	da Hora Fecha				
Ejemplo					
Positivo: 1	23,456,789.00	Negativo:	123,456,789.00		
Símbolo	decimal:			~	

Estructura de carpetas

Carpeta a colocar en C:\SIG\ Carpeta de las presentaciones

Carpetas de datos **Fuentes** (en formatos externos a TerrSet)

Carpeta de programas a instalar

Carpetas de recursos (Resource)

Carpetas diarias de trabajo (Work)

- Ejecutar el instalador de TerrSet (Versión 18.21)
- Si no abre un archive .accdb en Database Workshop, instalar el AccessDatabaseEngine (version 32b)
- Ejecutar el instalador de módulos adicionales (de EpiSIG)

TerrSet

18.21

Product:

Version:

ID	RISE GIS Analysis DRISE	Image	Processing Land Change Mod
	Database Query	•	Earth Trends Modeler Climate
	Mathematical Operators	•	
	Distance Operators	•	
	Context Operators	•	
	Statistics	•	
	Decision Support	•	
	Change / Time Series	•	
	Surface Analysis	•	
	Model Deployment Tools	•	
	INSPI-EpiSIG (Ecuador, 22 may 2016)	•	Gestión integrada de la salud
_			Importar imágenes
			Cadena epidemiológica
			Espacialización de casos
			Conversión de fechas

Especificidades de TerrSet

- Más enfocado a procesar imágenes raster
- Módulos básicos de SIG (horizontales)
- Módulos integrados (verticales)
- Permite agregar módulos propios

Nota : en Configuración Regional, asegurar que se utiliza el punto como símbolo decimal

TerrSet
18.21

ISE GIS Analysis DRIS	SI Image	Processing Land Change Mod	🚳 🛛 Llear Dreferences
Database Query	•	Earth Trends Modeler Climate	user Preferences
Mathematical Operators	•		System settings Display settings 3rd-Party Software Settings
Distance Operators		🗜 🚺 🚥 🗿 🕀 🗶 🥆 🔍	
Context Operators			GDAL
Statistics	•		Gdal binaries folder :
Decision Support	•		
Change / Time Series			Gdal data folder :
Surface Analysis	•		Gdal plugin folder :
Model Deployment Tools	•		
NSPI-EpiSIG (Ecuador, 22 may 2016	j) ►	Gestión integrada de la salud	
		Importar imágenes	MaxEnt
		Cadena epidemiológica	MayEnt program folder : C:\SIG\Mynt.lva
		Espacialización de casos	Maxent program folder . C. tota sinshowa
		Conversión de fechas	

Constelación de aplicaciones

Land Change Modeler (LCM)

Modelos de distribución de especies

Proyectos REDD+

Aplicación vertical GeOSIRIS cuantifica los impactos de proyectos REDD+ (Reducción de emisiones por deforestación y degradación del bosque) sobre deforestación, emisiones de carbon, beneficios en agricultura y pagos de carbono.

Servicios ecosistémicos

Sistema de soporte al decision geoespacial para evaluar el valor de los servicios Ecosistmémicos

Incluye 15 modelos

- Water Yield
- HydroPower
- Water Purification
- Offshore Wind Energy
- Habitat Quality and Rarity
- Carbon Storage and Sequestration
- Sediment Retention
- Overlapping Use
- Timber Harvest
- Coastal Vulnerability
- Crop Pollination
- Wave Energy
- Habitat Risk Assessment
- Aesthetic Quality
- Marine Aquaculture

Basado en InVEST, herramienta desarrollada por el Natural Capital Project – una colaboración entre *the Wood's Institute for the Environment at Stanford University, The Nature Conservancy, the World Wildlife Fund* y *the Institute on the Environment at the University of Minnesota*

🚽 Climate Cha	ange Adaptatio	n Modeler : CCA	м		? 🛛
About CCAM	Generate Sce	nario Impact A	analysis Preproc	ess	
		-		11000	
-	and and			•	
and an and the	and the second	X	and the second	3 aller a	in the
	al Clobal V	Vorming on	d Soo Lovol	Dise - MACIC	2
		aming an	u Sea Level	Fuse - MAGIC	
Model para	ameters				
Emission sc	enario :	A1B-AIM 💌			
Carbon cyc	le model :	Mid 💌	🔽 Carbo	n cycle climate feedb	acks
Thermohalir	ne circulation :	Variable 💌	Aerosol fo	rcing: Mid	-
Vertical diffe	usion (Kz) :	2.3 cm²/	s Ice melt :	Medium	-
Sensitivity (I	Delta T2x) :	3.0 °C	Model :	User	-
∟ ⊡ Ωutput par	ameters				
Reference	year for climate	model output :		1990	-
Last year fo	or climate model	I run :		2100	
Interval for	climate model :			5	
				,	
			Revert to defa	ult setting F	Run
≫ Gene	erate Clima	ate Scenari	os - SCENG	EN	?

Regla general : primera letra + 2 consonantes de la palabra

Nombre completo	Abreviación	Nombre completo	Abreviación
Prov incia	Prv	Parroquia	Prq
Alt itud	Alt	Pobl ación	Pbl
Sombreado	Smb	Salud	SId
(Hillshade)		Evaluación multi-	EMC
Clim a	Clm	c riterios	
Precipitación	Prc	Fuente	Fnt
Temperatura	Tpr	Resource dir	Rsr
temporal	tmp	Working dir	Wrk

Formatos de datos en SIG

Las entidades espaciales vectoriales son de tres tipos :

La entidad espacial matricial de base es la celda (o píxel).

Para trabajar la zona de Ecuador continental a 250 metros de resolución, hay que configurar el *raster* con cuántas :

- columnas
- filas

Aplicación práctica

- Para ilustrar el uso de varios modelos que se van a aplicar a lo largo del curso, se plantea el siguiente problema :
 - Estimar un índice multicriterios de calidad de vida o bienestar humano en relación con el recurso hídrico
 - Espacialidad : Ecuador continental, 1 km
 - Temporalidad : 5 últimos años completos (2011-2015): al nivel mensual, son 60 imágenes

Familiarización con TerrSet

 <u>Ejercicio</u> : preparar una composición cartográfica de la altitud de Ecuador (archivo .map)

Sombreado (*hillshade*)

- Opción *Blend* para la altitud
- Opción Transparencia para la máscara hillshade

Creación de máscara

 Convertir vector de provincias a raster (PolyRas)
 Polyras

reclass

- Reclasificar a uno
- Invertir

- Una imagen de sombreado analítico sirve sólo para visualización y se ve mejor con una paleta de escala de grises, aplicando contraste (*Stretch*). ↔ ↔ ⊕
- El resultado numérico corresponde a un valor de iluminación relativa y no una medición física.
- Los cartógrafos suelen ubicar la luz solar al noroeste para que las montañas no parezcan barrancos.

Procesamiento de imágenes satelitales climáticas

- Variables de utilidad en muchos modelos
- Ejercicio:
 - Importar los cubos de precipitación y de temperatura
 - Obtener el cubo anual
 - Calcular anomalía
 - Calcular STA
 - Calcular PCA

Variable	Unidad	Tiempo	Unidad de tiempo s	Resolución espacial	Fuente	
Altitud SRTM	m (sobre el nivel del mar)	2000	1 misión	1" (~30 m)	http://earth explorer.usgs.gov	
Precipitación TRMM	Intensidad mm/h → mm	2011- 2015	Mes	0.25° ~ 25 km	ftp://disc2.nascom.n asa.gov/ftp/data/s4p a//TRMM_L3/TRMM_ 3B43/	
Temperatura LST MODIS	Media del día 50×(°C+273.15) →°C	2011- 2015	Mes	0.05° ~ 5 km	http://e4ftl01.cr.usgs .gov/MOLT/MOD11C 3.005/	
Cobertura del suelo MODIS	Índice de vegetación VI × 10000 \rightarrow [-1 1]	2011- 2015	8-días	250 m	http://e4ftl01.cr.usgs .gov/MOLT/MOD13Q 1.005/	
Otra fuente para altitud : ALOS PALSAR data http://www.eorc.jaxa.jp/ALOS/en/ https://vertex.daac.asf.alaska.edu/						

TRMM mensual : procesamiento

project

incluye

window

HDFEOS

precipitation

1.14

1.34

1.45

1.55

1.65

Projection from latlong to utm-17s

0.00 0.04 0.08 0.11 0.15 0.19 0.23 0.26 0.30 0.34 0.38 0.41 0.45 0.49 0.53 0.56 0.60

MODIS_LST : procesamiento

LST_Day_CMG

3 x 3 Adaptive box filter of ~\$~201512flt_21

13668.00
13814.69
13961.38
14108.06
14254.75
14401.44
14548.13
14694.81
14841.50
14988.19
15134.88
15281.56
15428.25
15574.94
15721.63
15868.31

16015.00

Window from ~\$~Inp201512 c: 1974 r: 1767 to c: 2100 r: 1904

📔 🛛 Image Calculator - Map Algebra and Logic Modeler 👘 💼 📧								
Operatio	Operation type : Mathematical expression Logical expression 							
Output file name : Expression to process : tpr_c = ([tpr_flt]*0.02)-273.15								
7	8	9	1	^X	COVER	EXP	SIN	ARCCOS
4	5	6	*	NRATIO	NEG	LOGIT	COS	ARCTAN
1	2	3	-	MIN	RECIP	SQRT	TAN	RAD
0	•	-	+	MAX	LN	SQR	ARCSIN	DEG
() [] Insert Image 🎛 CLEAR ABS								
Proc	Process Expression Save Expression Open Expression Close Help							

Preparación de los cubos espaciotemporales

Módulo desarrollado por INSPI-EpiSIG (corre bajo TerrSet)

Seleccionar también Año a partir de 6 con longitud 4

🚰 Importación y preprocesamiento (06 oct 2014)							
Entradas	Extensión : Carpeta con 19	9 archivos a importar :					
TRMM mes	✓ .hdf ▼ H:\SIG\Fnt\TF	RMM\Month\hdf\					
		Seleccionar capa :					
Primer archivo : 3843.199	80101.7.HDF	precipitation 🗨					
Salida							
Mes 🔽 🔽	Extraer a partir del carácter 10) 🚖 de longitud 🛛 🚖					
Agregar : C Prefijo Pre	cMes						
🔲 No volver a importar	MODIS tiles						
Borrar resultados interr	nedios						
Metadatos (de origen)	Temporalidad :	□ Valor "sin dato" :					
Unidad : mm/h							
Sistema de georeferencia :							
lationg .rel	Min. M	1ax.					
Resolución :	×100 100	Lin 400					
0.20	1.[-00	Lin. 400 💽					
Opciones de salida							
✓ Transponer Girar 90 a	la izquierda 💌 📋 0-360 a -18	U+18U Lienar faitantes					
Convertir 🔲 Unidad :	U Valor "sin	dato" :					
🔲 Temporalida	d:						
🔽 Adecuar a zona de est	udio · Alt	st					
Cambiar proyección		Bilineal 💌					
utm-17s .rei	Min. Mi	4ax					
Resolución :	X: 479000 115900	0 Col. 680 🚖					
1000 👻	Y: 9430000 101740	00 Lin. 744 🚖					
Aceptar	Lerrar	Ayuda					

Análisis de series temporales

Método	Utilidad	Aplicar a anomalías?
Series Trend Analysis	Tendencias interanuales	Debería
STA (Seasonal Trend Analysis)	Progresión anual de las estaciones	Νο
<i>PCA (Principal Components Analysis) / EOF</i>	Patrones irregulares pero repetitivos en espacio y tiempo	Debería
EOT (Empirical Orthogonal Teleconnections)	Patrones de variación vinculados entre áreas del planeta muy separadas en distancia	Debería Consume mucho tiempo
CCA (Canonical Correlation Analysis)	Requiere 2 series	
Fourier PCA Spectral Analysis	Componentes cíclicos	No debería
Linear Modeling	Requiere 2 series	Debería

Análisis de tendencias estacionales

Proceso analítico en 2 etapas

- Análisis harmónico de cada año en la serie para determinar el valor medio de mejor ajuste (Amplitud 0), el ciclo anual (Amplitud 1 y F ase 1) y el ciclo mi-anual (Amplitud 2 and Fase 2)
- 2. Operador *Theil-Sen Median Slope* para determinar las tendencias en estos 5 parámetros

Ventajas

- 1. No requiere identificar modelos cada año de los eventos estacionales/fenológicos
- 2. Remueve la variabilidad a corto plazo con frecuencia menor a 6 meses
- 3. Remueve la variabilidad interanual hasta 30% de la longitud de la serie

Anomalías - Deseason

Quitar la estacionalidad en una serie temporal: calcular la desviación desde la media; anomalías estandarizadas incluyen la división por la desviación estándar.

Análisis de Componentes Principales

- Con análisis en modo T, la imagen es el componente y la gráfica indica el peso la correlación entre el patrón de la imagen componente y cada imagen en la serie.
- Con análisis en modo S (*Empirical Orthogonal Function analysis*), la gráfica es el componente y la imagen contiene los pesos (coeficientes de combinación lineal).

Geospatial Monitoring and Modeling System

EPISIG

errse

C